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FOREWORD

This report was prepared by the Hartln Marietta Corporation
in accordance with Contract NAS9-9852, "Study of Potential Appli-

cations of Digital Techniques to the Apollo Unified S-Band Commu-
nications System" for the Manned Spacecraft Center. Thls is the

flnal report on all work performed on the second phase of thls

contract, during the period from February 23, 1970 to November 23,

1970. This report is submitted in accordance with Contract Sched-

ule Artlcle 7. _ {

The NASA-MSC Technical Monitor was Mr. C. Kenneth Land whose

direction and encouragement is hereby acknowledged. The Martin

Marietta personnel contributing to this program were:

:: Dr. Eobert B. Bllzard Program Manager _

_ Ward B. Anthony Software Studies

Clay C. Korgel Coding Studies ,,

'_ James L. McKinney Software Studies and Hardware _

Design _
/,

David L. Manion Hardware Design and Image
Processing ' _

Gerald O. OlsDn Hardware Design

4
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I. INTRODUCTION

This c_ntract was started in July 1969 as a seven-month study

of digital data processing and error correcting code techniques
l

and how they could be applied to the Apollo unified S-band commu-

nication system. The results of chls first phase appear in a re-

port published in February 1970.*

During the first phase it became apparent that certain parts

of the study should be extended either to explore new and unfore-

seen possibilities or to get a more precise understanding of the
original subjects. This report covers the work of the second

phase.

Results of the first phase included selection of a zero order

interpolator (ZOI) for the image compression and convolutional
coding with Viterbi decoding for error correction. Performance

of the image compression was demonstrated with single frames of

digitized, compressed, and reconstructed pictures. Vlterbl de-

coding was demonstrated by simulation on a general purpose com-

puter. The next step, performed in the second phase, was to dem-
onstrate the effects of the combination of compression and channel

errors with Viterbi decoding. This is important because a single
error can do a lot of damage to a compressed picture and the er-
rors that come out of the Viterbi decoder tend to come in bursts ...... ,.

Chapter III of this report shows the results of a complete slmula- _

tion of a picture that is digitized, compressed, encoded, trans-
mitted over a noisy channel, decoded with the Viterbi algorithm,

and reconstructed. The results verify the valldlty of combining

error control with data compression as a means of reduclngEF

power without sacrificing picture quality.

Considerable hardware design, notably a Viterbi decoder to

run at 7.5 Mb/s, was done in the first phase, but the objective

was primarily to prove feaslbillty. In the second phase, as re-

' ported in Chapter If, we took a closer look at the flight hard-

ware, particularly the ZOI compressor, and have made direct com-

parisons of the power, welgh_, and volume that are required for

the present system and the dxgltal system. The lower RF power
, needed for digital transmission permits the use of a solid state '

transmitter with large savings in volume, weight, add power.

*PotentialApplioationeof DigitalTeohnlqueeto Apollo Uni-
fied S-BandConmmnioationaSygtemjFinal Report. MCR-70-34.
Mmrtln Marietta Corporation, Denver, Colorado, February 1970.
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When testing Vlterbi decoding by simulation, very long and
expensive runs were needed to get good statistics, particularly
in the region of low error rate. Therefore, included in the sec-

ond phase is a computational program to determine a theoretical

bound on error rate that is a good approximation to actual per-

formance in the medlum-to-hlgh signal domain. This program, of

which the description and results appear in Chapter Vl, eliminates
bad codes, chooses the best codes, and computes the union bound

for constraint lengths from 4 to 9 and rate denominators 2, 3,

and 4. For constraint lengths greater than 5, it is impractical
to use paper end pencil to find good codes, and the tabulated com-

puter results will be valuable to anyone working with Viterbi de-
coding.

During the study of Viterbl decoding, an iteratlve process for

increasing performance was discovered. Subsequently this new
technique developed into an independent decoding algorlthm of

great promise for space communication. Chapter IV describes the

new algorithm and presents the analysis that predicts its perform-

ance in certain limltlng cases and results of slmulatlon on a gen-
eral purpose computer. The results of computer slmulation indicate

that, for a rate denominator of 3, it outperforms sequential de-

coding. It is also self-starting and, unllke sequential decoding,

it does not require periodic interruption c_ the data stream to
insert a known sequence for recovery after a failure. Large con-

straint lengths are feaslble (958 was.used in the slmulatlon), ....._.

and therefore the system is resistant to fading. Chapter V de-
scribes a small breadboard decoder designed and built to demon-

strate the feasibility of operation at 11Mb/s.

p

...

r.

.L
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II. IMPLEMENTATIONSTUDY

During the first phase of this contract the hardware for a

digital S-band system was outlined with some parts designed to

' the logic element level. Since then we hav£ made a mo_e detailed

and improved design of the zero order inLerpolator (ZOO) image

compressor and the main elastic memory (or buffer) and _ts inter-
faces.

Comparisons are then made between a digital system and the

present analog system for a simple replacement of equipment inside
the Lunar Module (LM). An attractive alternatlve is to mount a

solld-state transmitter directly on the erectable antenna to s_ve

the loss of RF power in the antenna cable. This arrangement will
reduce the required antenna diameter by 60%.

A. DESCRIPTIONOF DIGITALHARDWARE --

' Figure II-i is a block diagram of the digital system. There
are three data sources in the space station that output data to

be processed into a single PCM data train:
°.,.%,

i) A TV camera with a commercial black-and-white format; "

2) A 50.4kb/s PCM telemetry train;

3) Two 3-kHz analog voice channels to be converted to

digital.

Before performing the main stream multiplexing process which
combines the four channels, a redundancy removal and run length

encoding is performed on the TV video data. The multiplexed data
are then encoded for error detection and correction.

As shown in Fig. II-2, 26 flat packs plus a crystal oscillator

will be required for clocking functlons, and power consumption is
i

260 mw. Main stream multiplexing will require an additional seven ,

, flat packs at 35 mw. Analog-to-dlgital conversion and two delta
modulators require 30 dual in-llne (D_P) packages at 680 mw. The

convolutional eLlcoder (V = 2 and K = 5) requires four flat packs _'

and consumes 80 _. i_ l

_J
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I °°" I
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5.04-MHz 7.56-Mgz
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Rate DataRate

1 '
�320_

15,750-kHz :_

" TV LineRate I

TV Frame
(30 Hz)

Fig. II-2 TypicalStationClock
Relationships

u , o ., o .... , , _ . ...
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Figure II-3 is a block diagram of the ZOI compressor using
standard TTL logic elements and MSI.

The major hardware problem in using this type of data compres-

sion algorithm is working with a v_rlable word length at a varl-
, able rate at the memory input and a fixed word length at a fixed

rate at the output. Speed further complicates the problem. For
instance, the hardware under consideration can generate 8 bits of

data every 200 ns -- a 5-bit gray level and a 3-blt run length

code -- as a worst case when processing successive nonredundant

data samples. The memory, however can be accessed for read or

• write only at a 1 MHz rate, thereby settln._ up the requirements

for a 5:1 speed reduction at the memory interface.

An efficient method of realizing the 5:1 speed reduction is

to make t_ memory input word equal five words from the data com-

pressor ha'4ware -- five words each made up of a 5-blt gray level
plus a 3-blt run length code -- for a memory input word of 40 bits

minimum. This technique serves to solve a second problem equally
important -- minimizing address generation. If an MOS-RAM is

used, the entire 40-bit (or morfl) input word ca,,have a single

major address, and any portion of the word may be accessed within

the address, by use of the "chip select" function. Each chip ac-
cessed dissipates 0.5 w, and the worst-case condition of succes-

sive nonredundant 8-bit data words at a 200 ns sample time requires

20 w for memory input. However, this is the maximum power, and

the average power is 3.6 w corresponding to the average bit rate,

: 7.1 Mb/s. The input word size can be increased to any desired

i length without changing maximum power required, as only 40 chips
are being accessed during a microsecond. The memory size is suf-
ficient to assure data will be available during retrace, inter- "

field, and end-of-frame dead times when data are not being gener-

ated, as well as providing an effective buffer to smooth the data

rate over dull and active portions of the picture.

. . .
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A method of presenting the variable length word from the data

compressor (5-bit gray level plus 3- to 7-blt run length code) to

the memory as a fixed length word is shown in Fig. II-4 and II-5.

Figure II-4 is the block diagram and Fig. II-5 is a more detailed

logic diagram. A 16-blt register (to handle successive maximum

' length 12-blt data words) temporarily stores the variable length

data word from the compressor in the proper bit positions depend-

ing on the length of the preceding data word. Bits 1 thru 8 of
the 16-bit intermediate buffer are transferred to the successive

groups of 8 bits of the memory input word buffer where they are

read into the main memory during the following microsecond. In

the meantlme_ the data in 51ts 9 to 16 of the intermediate buffer

are transferred into its corresponding leading 51ts (i.e., bit 9

to i, i0 to 2, etc) and slmultaneously the next data wo_d from

the compressor is pclnted to the correct positions in the 16-blt

buffer. In other words, the effect simulates a set of 12-blt reg-

isters, each offset from the preceding by one bit, and each se-

lected to match the solution of a positioning equation to address

positions in the 16-bit buffer, the register number being the

position of the first bit in the current data word.

None of the buffers and registers need be cleared and each

bit requires only a single input. It is part of the operating

sequence to overlay invalid data, and data need be correct only

while being read into the main memory.

Figure II-6 and Table If-1 will make this clearer.

!
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Position

16-BitBuffer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

0 1 2 3 4 5 6 7 8 9 10 11 121 Data WordRegister Bits

, 1 112 3 4 5 6 7 8 9 10 11 121

2 112 3 4 5 6 7 8 9 10 11121

3 11234 7 91o11121
4 11234567 9101112 !

(Next register number) = (previous register number) + (current
dataword length)- (numberof bits
transferredto memory input buffer)

Fig. II-6 SchematicArrangementsof the 16-BitBuffer and the
12-BitRegisters

Table II-1 Rules for Numberof Bits To Be
Transferredand for the Next
RegisterNumber

Previous Current Next
Register Data Word Bits Register
Number Length Transferred Number

0 8 8 0 '
;, 9 8 1
. I0 8 2

11 8 3
12 8 4

4 8 8 4
9 12 I
10 12 2
11 12 3
12 16 0

Not___.ee:If any registernumbergreaterthan 4 is
indicated,an additional4 or 8 bits are
read out of the 16 bit registerbefore
repeatingthe operatingsequence.

I

i
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The sequence of events is:

I) Read data word from compressor into the 16-bit buffer

specified by the register number. This is in reality

a beginning position address to the 16-bit buffer;l

2) Transfer data from the leading 4 or 8 bits of the 16-

bit buffer to the proper memory input buffer positions
(seestep 4);

3) Move the data in the remainder of the 16-bit buffer

to the leading bit positions;

4) Determine the beginning bit position (register number)

for the next data word. If this is greater than 4,

loop back to step 2 and continue; otherwise go to
step 5;

5) Start the 1 usec read-ln to the main memory of the
memory input buffer bits just loaded (8, 12, or 16).

Return to step i.

Consider the following example in which data wozds 4, 5, and

6 (DW4, DWb, and DW6) are handled. Let the lengths of these words

be 9, 8, and ii bits respectively.

Assume register 3 has been selected for DW4. The sequence of
operations is then as follows: ,_

1) DW4 is inserted in positions 4-12 by register 3 ad-
dressing;

2) Data in positions 1-8 are transferred to memory input
buffer bits 25-32 (write No. 1 filled bits 1-8, write

No. 2 bits 9-16, and write No. 3 filled bits 17-24);

3) Data in remaining positions are inserted into leading "
positions; ._

4) Previous beginning position (3) + DW4 length (9)-8 =

register 4 addresses selected for next word;

5) DW5 is inserted into positions 5-12 overlaying invalid _
data in those positions with new valid data. Position

1-4 contains remainder of data from DW4 and positions
5-8 contain the first 4 bits of data in DWb. Positions

9-12 hold the last 4 bits of data in DWb;

6) Data in positions 1-8 is transferred to memory input
buffer bits 33-46;

00000001-TSB08
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7) Operation 3 is repeated;

8) Operation 4 is repeated - register 4 again being se-
lected for next word;

9) DW6 is inserted into positions 5-15 by register 4
' selection. Positions 1-4 contain remainder of DW5;

positions 5-8 have first 4 bits of DW6;

i0) Data in positions 1-8 are transferred to memory input

buffer bits 1-8;

ll) Bits 1-4 are transferred to bits 9-12 of memory input

buffer. Register 3 now indicated for next data w,_rd

and system ready to continue.

The compressor hardware in addition to memory requires about

20 packages and 2 w. The logic and functions peripheral to the
main memory require 3.5 w and 45 packages. The main memory is

composed of 380 packages in a 40 x 7 (package) format which gives

9k 8-blt words of data. The average power required is 3.6 w at

input and 3.6 w at output, plus 3.5 w standby. Changing the size +

of the memory or the format (within the restrictions of a 40-blt

input word minimum and 8 bits out fixed) will change only the
standby power at 50 _w/bit.

There is essentially no difference to the package count in

implementing the peripheral logic for the memory system with gates, ....._

flip-flops, and/or invert packages, or a mix. '_'

If no bit packing is done at the input, but rather a fixed '

length word (5 bits for plxel value and five bits for a run length

count) an additional 57 packages are required in the memory for

the same capability, and memory power requirements rise to 5 w at

the output. The decoding and reformatting at the output, into a

plxel-run length code word is simpler and will require, for hard-
ware peripheral to the memory, only 1.5 w and about 15 packages --

however, this implementation means a net increase of 27 packages

(because of additional memory packages) and 4.5 w more than work- :

ing with the variable word at the input. !

]
Table II-2 shows the power, weight, and volume needed for the .

digital circuitry.
.},

I
[

:9

t
!

!

F _
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Table II-2 Power,Weight,and Volume
of DigitalComponent_

Power
Component (w)

' Delta Modulators(2) 0.280

Main StreamMultiplexing 0.035

PCM-VoiceBuffer 0.160

ConvolutionalCncoder 0.080

Clocking 0.260

A/D Conversion 0.400

ZOI Compressor 2.000

Memory Interface 3.500

Main Memory 10.700

Output Buffer 0.320

Total Power 17.7

• Total Weight (Ib) 2.2

j Total Volume (cu in.) 36.0

B. TRANSMITTERS
t

; As discussed in the final report to the first phase of the

contract, the digital system uslnE image compression and a K _ 5,

V - 2 convolutlonal code will require about 5 dB less effective

radlat_d power than the analog system. Many options are available

to exploit this advantage, including greater range, smaller anten-
nas, llghter and less power-consumlng transmitters, and combina-

tions of these. As substitutes for the transmitter, three possl-

bilitle_ will be considered: an amplltron with lower power, a
fliEht-quallfled off-the-shelf solld-state transmitter, and a

state-of-the-art solld-state transmitter with higher efficiency.

Proven amplltrons are available with a wide range of power

ratings. For all of them the efficiency is about the same, and
therefore the input power can be scaled according to the reduction

in radiated power permitted by the higher efficiency of the dig-

Ira1 system. Table II-2, therefore shows the same weight and

volume as the present power amplifier but a power consumption that
is 5 dB lower.

....'i
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Off-the-shelf S-band transmitters may be typified by the
Motorola MTT-501. This model is normally furnished with an FM
modulator, but PM would not change the main parameters. It is
less efficient than the TWT amplifier, and the power saving is

, only about 22%, but the savings in weight and volume are lares.

A solld-stats S-band amplifier with high sf£iclency is de-
scribed by G. J. Gilbert._ Its power output is i0 w at 2.2 to
2.3 GHz, gain is 23 dB, and DC to RF e££1clency is 30Z. Thus,
the output power is reduced to 6 w, and size and weight are assumed
thQ same as for the off-the-shelf transmitter (Table IX-3).

Table II-3 Power, Weight, and Volume for S-Band Transmitters

RF Output Input Power Weight Volume
Transmitter (w) (w) (Ib) (cu in.)

Present Apollo Power
Amplifier 18.6 73.5 16.8 432

Pmplitron with Lower
Power 5.8 24.0 16.8 432

Off-the-Shelf Solid-
State Transmitter

including Modulator 6.0 57.0 2.3 32

State-of-Art Solid- '"_'
State Power

I Amplifier 6.0 20.0 2.3 32I

*George J. Gilbert: Microwave Traneistore: A Look to the _ ,
Future Miorowave8, July 1970.

O0000001-TSB11



II-14 MCR-70-419

C. COMPARISON

An exact comparison between digital and analog systems is dif-
flcult because of their fundamen_l differences. The data handling

' is organized differently, and the indivldua% pieces of equipment

in one system do not have exact counterparts in the other. The
digital equipment listed in Table II-2 performs almost all the

functions of the LH signal processor assembly. For the purposes
of this comparison, therefore, it is assumed that the digital sys-
tem with its transmitter will replace the signal processor and

the power amplifier. In Table II-4 the power, weight, and volume
are given for the combinations described above, and _or the dig-
ital system the savings are shown in parentheses below =he actual
values.

Table II-4 Comparisonof Power,Weight,and Volume
of Analog and DigitalSystems

Power Weight Volume
System (w) (Ib) (cu in.)i

PresentSignalProcessor 16.5 10.0 364

PresentPower Amplifier 73.5 16.8 432

Total for PresentAnalogSystem 90.0 26.8 796

Digitalsystemwith:

Low PowerAmplitron 41.7 19.0 468
(-53%) (-29%) (-41%)

h Off-the-ShelfSolid-State 74.7 4.5 68
Transmitter (-17%) (-83%) (-94%)

State-of-ArtSolid-State 37.7 4.5 68
Transmitter (-58%) (-83%) (-94%)

j '" i._i_
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The small size and weight of the solld-state transmlttermakes

it possible to achieve further hardware reduction when the erect-

able LM antenna is used. With the present arrangement, RF power
is fed to the antenna through a cable, and circuit loss amounts

to 7.7 dB. This loss could be largely avoided by mounting the
' transmitter directly on the antenna, and the antenna could then

be much smaller. This in turn would decrease the pointing loss
and increase the pointing tolerance. Table II-5 shows the balance

for the two systems. The antenna-mounted transmitter could be In-

terchangeable with the one in the LM and they could serve as mutual

spares. Advantages would Include much less storage space for the
erectable antenna, less operational time for erection, and easier
pointing.

Table If-5 Comparisonof PresentFM Systemwith DigitalSystem
Using Antenna-MountedSolid-StateTransmitter

Item PresentSystem Solid-StateSystem

TransmitterPower 18.6w 12.7 dBw 7.0 w 8.4 dBw _

CircuitLoss -7.7 dB -1.0 dB

PointingLoss -2.0 dB -0.7 dB

Coding and CompressionGain 5.0 dB

AntennaGain Approx I0 ft dia Approx 4 ft dla /.,.
34.0 dB 26.0 dB

Total 37.0 dB 37.7 dB

J

i
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Ill. IMAGEPROC_SING

• During the first phase of this contract image compression was
, demonstrated using zero-and first-order predictors and inter-

polaters. The zero-order interpolater (Z01) was chosen as most

suitable for this application because of its good compression per-
formance and its modest hardware requirement. The transmitted

information is encoded into words of variable length. The first

f;ve bits (in the selected version) indicate one of 32 posslble

gray levels and the remaining bits indicate how many successive

picture elements or "plxels" are to be given that gray level. This

number is called the run length, and the code for the run length

is of variable length, three bit8 for 1 through 4, four bits for
5 through 8, and so forth up to length 20. The last bit of each

word is a 0, called a comma, to indicate to _he reconstructing

system that the word is terminated.

With such a system, unless precautions are taken, a single bit

in error can upset a large part of the picture that is being trans-
mitted. An error in the gray level code will persist for a run

length. An error in the run length code will displace all sub-

sequent plxels. An error in a comma, or an error that inserts a

comma where none should be, completely upsets reconstruction of the

llne from that point on. To limit propagation of the effects of

errors, a special code is used at the end of each llne that cannot

be mistaken for any segment of ordinary code words. Therefore no

matter how badly the timing of a llne is upset, the reconstruction
system will recover on the first end-of-line code that it receives

correctly.

To verify this operation and to permit a subjective evaluation

of the effects of noise with the combination of Viterbi decoding
and image compression, the pictures shown in Fig. III-I thru III-5

were made. Figure III-i shows the original digitized picture with
64 gray levels and 512 x 512 pixels; only 32 levels of gray are

used in the compressed pictures because of the dither. Figure ,i

III-2 shows the same picture with half the pixels ignored (in a

checkerboard pattern) and the remaining pixels transmitted with an _-

of 1.8 bits per remaining plxel. The three other picturesaverage
show the effect of the kind of noise that would be seen in a channel

using a convolutional code with constraint length 5 and the rate _ _,

,nd,.0
It is obvious that the end-of-line codes are effective in getting

reconstruction back on the track. The frequency of these special _

!
i

I
t

. . , _ _o- o. .
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codes is a parameter of the system that may be adjusted for optimum
performance. If middle-of-line codes were also used, the error
streaks would only be half as long, but signal energy would be
diverted from the main data and there would be more errors. Stmi-

, larly, signal energy could be saved by inserting the special code

words only after every other llne, thus making half the streaks

extend into the next line. The choice of this parameter is not

critical, but the optimum seems to be near 1 per line, and thls is
a convenient arrangement.

4

00000001-TSC03



MCR-70-419 III-3

00000001-TSC04



III-4 MCR-70-419

u')
o_
0

0

01_,,p

U

a.

D.
N

o

tL

00000001-TSC05



MCR-70-419 III-B

, iv

!-

t
:--_-:L.................... _..,it.'_'_

00000001-TSC06



II1-6 MCR-70-41g

' Ir

/-

i
L_

00000001-TSC07



MCR-70-419 III-7



MCR-70-419 IV-1

IV. NEW CODINGALGORITHM

This chapter describes a new algorithm for decoding error-
correcting codes. It was originally conceived during the perform-

ance of this contract as a superstructure to be applied to Viterbl
decoding to permit the use of a large constraint length K without

an exponential increase in computation. It was also analyzed, in-

dependently of Viterbl decoding, as a technique that could be ap-

plied to an erasure channel at rates up to channel capacity. These
results were described in the final report for the first phase of
this contract.

It was later realized that it was much simpler to use the new

algorithm directly without Viterbi decoding as an intermediate

step. Analysis showed that, for large K and large rate denominator

V, data rates can approach channel capacity with arbitrarily small

probability of error. The amount of decoding computation is pro-

portional to the minimum code word weight, but is independent of
constraint length. Decoding is self starting, and a true convolu-

tional code can be used without periodic resetting. The analysis

and properties of the new algorlthm were described in an oral pres-
entatlon at NASA/MSC on April 2, 1970.

Since that time we have learned how to use the algorithm and
have obtained simulation results for V = 2 and 3. Relative to other

available decoding methods, the new algorithm has good performance I
with V = 2 and superior performance with V = 3. An obvious next /

step, if funds become available, is to try V = 4 and 5. We believe

that for channels that hav_ enough band for V = 3, the new algo-

rlthm can achieve better _erformance at a reasonable cost than any
other method.

A. ALGORITHM

Consider a message consisting of a sequence of l's and O's i

called bits. These are encoded into a larger number of l's and !_

O's, called channel symbols, each of which is formed as the mod-2

sum of one or more of the message bits. If only a single bit is

included in a sum, then the symbol is obviously equal to the bit,

and these symbols are called systematic symbols. The other symbols il
are called check _ymbols. If each bit is used to form at least one

systematic symbol, the message can be read directly from these sym- '_
bols, and the code is said to be a systematic code. The new de-

coding algorithm uses a systematic code. i
i

i

i

I
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The symbols are t_'ansmltted over a noisy channel and are de-

tected at a receiver with some probability of error. Some receivers

make a /_rd decision, putting _ut a stream of l's and O's that are

the best guesses (independent of the code s_.ruccure) of the indi-

vidual symbols that were transmitted. Others make a soft deoiBion
and also indicate the reliability of each guess according to the
magnitude of the received signal or by some other criterion. In
either case the raw material that the decoder works with is the

array of receiver outputs, or symbol estimates, that indicate the

probability, for each symbol, that it is a 1 or O.

Although the algorithm can be used with either block or convo-

lutional codes, a convolutional code is assumed for the description
of the decoding process.

As the first step in the decoding algorithm, the systematic

symbol estimates are copied to form the _ero order message estimates.
These message estimates and the ch_k symbols are _hen used to ob-

tain an improved set of first order message estimates from which

further improvements will be obtained by iteration until the message

estimates converge or until the available time i_ used up. To

understand how this process is done, suppose first that all but one
of the bits have been decoded with great confidence. To decode the

remaining uncertain bit, all the check symbol estimates derived from

this bit can be used. It is only necessary to compute for each

symbol estimate, the parity of the known bits that contributed to ....,

it and to reverse it if the parity is odd. In this way all the sym-
bol estimates derived from this last uncertain bit can be ,Lsed to

decode it, and the chances for success are high.

The above case, with one or a very few, uncertain bits, applies

to the last stages of decoding. Before this state is reached, the

decoder must work with message estimates that are largely unreli-

able, and the probabilities of error must be used in calculating
the next set of message estimates.

At this point some notation is required. M(1) is the l'th

message bit, either a i or a O. E(L,I) is the message estimate for

the l'th bit after L decoding iterations. Each E is a number rep-

resenting the decoder's best guess, at each iteration, of the log-

arithm of the ratio of probabilities of 0 and I. Thus, _ ,

PCMCI)= 0 IL)
E(L,I) =_ in P(M(I)= i {L) ' [IV-l] "I,,_

where the condition L is meant to indicate "all information used by
the decoder through the L'th iteration."

£
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The channel symbols are designated S(I,J). I is the bit index

introduced previously, and J is the index of the mod-2 adder in the
code generation. J takes the values from I to V where V is the rate

denominator -- that is, the rate is I/V. S(I,I) is the systematic
symbol for the l'th bit.

Q(I,J) is the estimate of S(I,J) based only on the received sig-

nal. It is not recomputed as decoding progresses. Like E, it is

the natural logarithm of the probability ratio"

in e(S 0 IN)P(s _ I R)" ' [IV-2]
q

where R signifies the received signal _orrespondlng to thc symbol.
For a binar> antipodal signal and a memoryless channel with

Gaussian 1_oi_e, Q Is proportlonal to the signal voltage.

For both E and Q, large positive values indicate high probabil-

ity of 0, large negative values high probability of i, and values
near zero indicate uncertainty.

The fCrst step in decoding is to set the zero-order message es-
timates equa] to estimates of the systematic symbols:

m(O,l) = Q(I,I). [IV-B]

The check symbols estimates are used on th( next iteration,

but they must be combined with the zero-order estimates E(U,I), as

will be explained. For the sake of concreteness, suppose that the

second mod-2 adder in the encoder is connected to stages i, 3, and
6 of the shift register so that

S(1,2) = M(1) _ M(I-2) _ M(I-5), [IV-4]

where (_ indicates addition mod-2. Thus Q(I,2) the estimate of
S(1,2), can be used to help in decoding M(1), M(I-2), and M(I-5).

Another way to state the same thing is to say that Q(I,2), Q(I+2,2),

and Q(I+5,2) can all be used to help decode M(1).

To use Q(I,2) to decode M(1), its sign is changed if one and

only one (an odd number, in the more general case) of E(O,I-2) and

E(O,I-5) is negative. This is an attempt to solve Eq [IV-4], for
M(1) using the best information available at the receiver. If we ,

were sure of M(O,I-2) and M(O,I-5), we would add Q(I,2) to Q(I,0) _
and any other appropriate Q's to get the next estimate E(I,I). Be- _ i

cause of the uncertainty, however, a smaller absolute value than

1
_
!
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that of Q(I,2) should be used, and this value should be the natural

.Logarithm of the probability ratio for the combined guesses for
S(1,2), and M(O,I-2), and M(O,I-5).

To calculate this quantity, conslder a number of independent

' binary random variables with probability Pi of being I and qi of

being O. As is expected, Pl + qi = i. Deflne the probability ratio

ui = qi/Pi and the probability difference b_ = qi _ PI' We want to

calculate the probability ratio U for the mod-2 sum of the origlnal
variables. It is easily shown that the probability difference B
for the mode2 sum Is

B_ 27 bI
i [IV-5]

Write the in terms of and and Po._Itlvebi qi Pi expand. terms,

those with even numbers of p's, add to give the probability of 0

for the sum, and the negative terms add to the probability of I.)

The bi are obtained from the ui as follows:

qi - Pi ui - 1

bi = qi - Pi = qi + Pi = ui + i [IV-6] ........,.

Since our message and symbol estimates are in logarithmic form it is
convenient to use

exp (in ui) - 1 in ui [IV-7]
in bi = in - in tanh-

exp (in ui) + 1 2 '

To obtain in U from in B the following steps may be taken.

I+B
U=

i- B

,-in U = in _-+ exp(inB). = in tanh , [IV-8] '.
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Defining a function

F(x) _ -in tanh(x/2) _V-9]

, permits some simplification.

inB =_in bi [IV-10]

inU = F(-!nB) [IV-12]

For decoding it is only necessary to use Eq [IV-13] with the

message and symbol estimates:

E(I,I) --Q(I,I)

+ AF [F(Q(I,2)) + F(E(O,I-2)) + F(E(O,I-5))]

./"%,

+ BF [F(Q(I+2,2)) + F(E(0,1+2)) + F(E(0,1-3))] [IV-14]

+ CF [F(Q(I+5,2,)) + F(E(0,1+5)) + F(E(O,I+3))]

In Eq [IV-14], A, B, and C are equal to -i or 4.1 according to the

signs of the Q and E's in each term.

On the next iteration, E(2,1) is calculated using E(I,I) in

place of E(0,1) in Eq [IV-14].

,h

o
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B. EXPECTEDPERFORMANCE

In this section decoding behavior is analyzed in the limiting

case of a large code with many channel symbols per message bit.

' The result is that, at all rates below channel capacity and with

proper code design, decoding converges, and the probability of er-
ror can be made arbitrarily small.

I. IdeallzedChannel

Consider a channel that accepts a memoryless symmetric binary

input (1 or 0) and has M output states xi, i _ i to M. For each

output state there is a certain probability that 0 was transmitted:

, ] Io]+'[ ll
It will be convenient to use the probability difference, intro-

duced earlier in the description of the algorithm. For each re-

ceiver state xl, define

It is easily verified (see subsection 2, following) that the

channel capacity in bits per symbol is

C= 2 in2 biP i

i

in the limit as all bi approach zero.

Assume a large block code constructed as follows. There are K

message bits in each block and these are encoded into KV channel

symbols. Both K and V are assumed to be large.

A fraction AI of the symbols correspond dlrectly to the K mes-

sage bits. Thus on the average there are VA I systematic channel

symbols per message bit. If each bit controls at least one of these
symbols_ th_ code is systematic, but this is not necessary _o prove
that channel capacity can be approached with arbltraty probabillty
of er):or.

_ 4
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A second fraction AZ of the symbols are formed as mod-2 sums of

pairs of message bits, and in general a fraction Ai are formed as

mod-2 sums of i message bits. The sum of all the Ai is, of course,

i. The code should be selected so that each message bit controls_
, by itself and with other bits, approximately the same number of

symbols. Also, of the symbols controlled by a given bit, no more

than a small fraction should also be controlled by any other given

bit. More generally, the grouping of bits should be arranged so

that there is no small subset that shares control of too many

symbols. The purpose of these restrictions is to assure that in

the decoding process the probabilities of error for the individual

message bits will be statistically independent.

For simplicity assume that the message, and hence the transmitted

code word, is all O's. The following paragraphs discuss averages of

message estimates, symbol estimates, etc, and it is convenient to
omit the bit index from the notation. Thus E(L) is the average mes-

sage estimate after L iterations of using the check symbols.

For each message bit there are, as stated in the previous para-

graph VA I systematic symbols. Therefore,

E(O) = VAIQ [IV-IF]

where Q is the mean symbol estimate. For the small slgnal limit, ....,
Q can be simply expressed in terms of b:

Q- in l+b . 2b [IV-18]1-b

in the limit as b approaches 0.

Equation [IV-17] now becomes

E(0)/2 = VAIb. [IV-19]

When the check symbols are used the first time as indicated

previously in Eq [IV-14], ,i

v+E ,
i .+

i

I
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In this equation, the systematic estimates appear as usual, and

the VA i check symbols that are formed from i bits are each used i

times. B(0) is the average probability difference for the zero-

order message estimate. Because the b's and B's are statistically

independent, the mean of their products are the products of their

means. Each of the terms in Eq [IV-20] is the logarithm of the

probability ratio for a statistically indeEendent event affected

by the transmitted message, and therefore E(1) is the mean of the
logarithms of the probability ratios for the message bits after this
iteration.

For subsequent iterations, Eq [IV-20] is modified by substitut-

ing the general iteration indices L and L + i for 0 and I. It is

now necessary, however, to use the assumption of large V and very

diffuse code to assure that the B's are statistlcally independent.
With a finite code, the message estimates, and thus the B's that

are used to decode a given bit were all influenced by that bit in
the previous iteration. This is of practical as well as theoretical

importance.

E/2 is a sum of a large number of statistically independent

terms, and we can i_oke the central limit theorem to assert that

E(L) is normally distributed with mean E. Furthermore each of the

individual terms is a product of probability differences and is

therefore also a probability difference. For any probability dif-

ference b, !

= _ [IV-21]

as can be seen from the following. Let the probability density
function for b be p(b). Then

b = p(b)- p(-b)
p (b) + p (-b) [IV-22]

1 1

bfl bp(b)db =I b [p(b)- p(-b)] db---i 0

I -= b2 [p(b) + p(-b)] db = b'_ [IV-231 :_ '
0

i
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2 2

The variance of b is _- _ = b-. _ , and for small b the var-

iance is simply _. Thus the variance of E/2 is the sum of the var-
lances of the individual terms or E/2. The probability density func-
tion for E(L) can now be written:

?

p[ (ECL)] = 1 exp - [E(L) - _(L)] 2 " [11/-24]

4_(L)

Since B(L) = tanh E-_ it is now possible to calculate B(L)2

as a function of E(L). The resulting integral has been computed
and is shown in Fig. IV-1. Also shown is a curve, for some se_ of

Ai and some signal-to-noise ratio, of E(L+I) as a function of B(L)

as in Eq [IV-20].

As long as this curve is to the right of the_curve_of B as a
function of E, each pass gives larger values of E and B. Thls is

indicated by the arrows between the curves in Fig. IV-I.

The trick in designing the code to work near channel capacity

is to choose the Ai to make the curve for E match that of B as

closely as possible while staying to the right of it until a very

high value of E Is reached.

Nhen the curves match, the areas above them muJt be equal_ and 4.

1 Oo

0 0

The integral on the left can be evaluated immedlately from Eq

[ 11/-20] :

1

I E(B)dB = 2Vb_A i = 2Vb [IV-26]0

The other integral has been evaluated numerically and the re-

sult is 2.772568, which is within 2.0 x 10-5 of 4 in 2. If, as

seems likely, the true value is 4 In 2, then from Eq [IV-21] '

Vb2 - 2 in 2. [11/-27]

..,.: d_ !! , ,:_ o -,..*,_ _......

.... ° ' " " " : 00000 -TSD05""
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Thus, the informatlon rata in bits/symbol, I/V is

b2
i/v = 2 In 2" c, [zv-28)

' the channel capacity.

From the foregoing it is deduced that it is possible to design

a code that can be successfully decoded at any rata lass than

channel capacity. The number of decoding passes that are required
will go up without limit as channel capacity is approached.

In applying this result to real channels and finite codes, keep

in mind the assumptions that were made. The most restri6tive as-

sumptlon was that the Bi for any two bits are statistically Inde-

pendent. This is not true in a _inite code. The estimates of bits

sharing one or more channel symbols will be influenced together by

the shared symbols and they will also influence each other. There-
fore the code should be chosen to minimize the coupling between any

small set of bits, Codes that satisfy this requirement will also

have few words of minimum and near-minimum weight,

2. ChannelCapacjty

The capacity for a binary-input channel in the limit of low ....._.
SNE is computed as follows,

The capacity C is equal to the input entropy (one bit per sym-

bol) minus the uncertainty H introduced by the channel,

= - _ P 2 in2 [IV-30]

Expanding in in a power series gives

_.(l X_- _,/_ �...

in(l-hi) - -bi - bi_/2- ... tr_-31_
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Retaining the first two terms of Eq [IV-31] and substituting
in Eq [IV-30] gives

' H = i 2 in2 P [1_-32]

c = i - H = 2in------2 P I_-33]

C. LOWER BOUND ON ERROR RATE

In decoding a given message bit, the number of symbol estimates

that can be used is equal to the total number N of connections to

the encoding shift register. Under the best circumstances, all the

other bits that contributed to these symbols have been decoded cor-

rectly and have high estimates so that the decoder has high confi-

dence in their correctness. Each symbol estimate will then be used

at face value_ and the probability of error for the given bit will

be determined by the slgnal energy available in the N symbols.
Since the energy actually expended per bit is only that in V sym-

bols_ performance _ill be equivalent to that of an uncoded channel

operating at a signal-to-noise ration N/V times as high.

This bound is useful in predicting performance at high signal-
to-nolse ratio where the error rate is low and considerable simu-

lation time is needed to get good statistics. Since the bound is

a good approximation to the real behavior above some critical signal-
to-nolse ratio simulation is only needed to delineate the way in

which the bound is approached.

D. SIMULATIONRESULTS

The new algoritbm was implemented in FORTRb_ on a CDC 6400

computer. A random number generator was used to determine the sym-
bol estimates with either three- or four-blt quantizing. The func-

tion F(x) defined in Eq [IV-9] was obtained from a look-up table
with 64 entries.

00000001-TSDO8
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To avoid end effects, we turned the convolutlonal code into a

cyclic block code. Mathematically, this can be described by stating
that bit index I is to be taken modulo g where g is the number of

message bits in a block,

In terms of a shift register encoder, it means that the first

K message bits are loaded into the register before starting to gen-

erate channel symbols, and when the end of the block is reached,

the first K-I bits follow the last bit into the r_gister. Exactly
ZV symbols are generated, every bit contributes to the same number

of symbols and has an equal chance of correct decoding, and there
is no tail of check symbols at the end of the block.

The computer handles an entire block at a time, and it does not

care how large the convolutional constraint length K is. Therefore,

we used values of K that nearly fill the block, and performance is

limited by block length rather than constraint length. The partic-
ular codes were chosen with the help of the tables of Robinson and

Bernsteln* with additional space between the connections to in-
crease K.

Figure £V-2 shows results obtained with a V = 3 code. The

shift register connections defining the code are i; 1,205,367;

1,6,29,216,217,567,591,938,958. Received symbols were quantlzed
to 16 levels. The block length is 2000 and the iteration limit

20. At Eb/N° ffi1.3 dB, 739 errors remained in five blocks (i0,000 ....._

bits). At 1.5 dB only a single error remained in five blocks, and

at 1.7 dB there were three errors in seven blocks. To compare per-
formance with sequential decoding, the computational limit was cal-

culated fzom the transition probabilities actually used for the

1.5 dB simulation, and it was found to be 0.297 blt/symbol. At
V ffi3, we are transmitting 0.333 blt/symbol, or 12% more than would

be possible at the computational llmit for sequential decoding.

Since the new algorlt_ is self-startlng, it does not require a

periodic interruption of the message with a restart sequence as
does sequential decoding.

Channel capacity, the ultlmate theoretlcal limit, was also cal-

culated from the transition probabilitles at 1.5 dB and found to be

0.463 bit/symbol. At 0.333 bit/symbol We are operating at 72% of

channel capacity.

A word of caution is required in interpreting the significance

of the simulation. Each run contained only five or seven blocks,
and a single bad block can have many errors. The curve that has

*John P. Robinson and Arthur J. Bernstein: "A Class of Binary
Recurrent Codes with Limited Error Propagation." IEEETrGnsaction8

on Information Theory. Vol IT-13, No. i, January 1967.
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Theoretical
Lower Bound

lO-S-

io-_ I I I I I
1.0 2.0 3.0

Eb/N 0 (dB)

1 ,

Fig. IV-2 Performanceof New Algorithmwith V = 3, Q - 16,
and Block Length= 2000.

t
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been drawn to suggest how the performance trends into the theoreti-

cal lower bound (explained in the previous section) is therefore

only approximate.

Figure IV-3 shows how decoding proceeded for the V = 3 code at
1.3 dB and 1.5 dB. For 1.3 dB it is seen that one block decoded

/

quickly to a low error count, although it finished with three er-
rors. Two other blocks were still improving when processing was

stopped after 20 iterations, and the two worst blocks never got a

decent start and are apparently getting slightly worse. At 1.5 dB

from i0 to 18 iterations were needed for a perfect result, and the
block that retained one error stabilized at this level on the 17th

iteration. At 1.7 dB the seven runs stabilized at their final error

counts in from seven to 13 iterations. This rapid convergence in-

creases confidence that there _s a low probability of really bad
blocks at this signal-to-noise ratio.

Figure IV-4 shows the results of simulation of the new algorithm

with V = 2, eight levels of quantizlng, and a block length of 500.

Each run represents i0 blocks. The run at 3.3 dB had no errors in
5000 bits. Performance curves for Viterbi decoding and for hard-

declsion Fano decoding are shown for comparison. Simulation has

demonstrated the following properties of the new algorithm:

• For V = 3 it will perform satisfactorily at rates sub-

stantially higher than the computational limit for se- ,..,'..

quential decoding;

• It is self-startlng;

• Large constraint lengths are practical.

Further work should be devoted to these areas:

• Simulation at V = 4 and greater;

• Improved slmulation statistics;

• A better theoretical understanding at finite V and K;

• Dellneation of the exact effect of K on performance.

Chapter V describes a breadboard decoder for a small code and

a single iteration that operates at message rates of more than lO

megabits/sec.

J
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J i
0 5 I0 15 20

Iterations

(a) Eb/No = 1.3 dB .....,.

0 5 I0 15 20 *

Iterations ,.}_

(b) Eb/N 0 1.5 dB ,_° i ;i!

Fig. IV-3 DecodingProgress of the NewAlgorithm '\_,_
with V : 3. K : 958, and Blocks of 2000 Bits. _

00000001-TSDI2



M CR-70-419 IV-17

10"2

New A1gorlthm Hard Decislon

Simulation _ ' Fano

, _V=2, Q=2

10-3

k
i Viterbi
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Theoretical
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E. SIMULATIONOF THE NEW DECODINGALGORITHM

The simulation approach and notation used in the simulation

program arc delit_eated in this s_ction an_ Fig. IV-5.

To do the simulation of the decoding process a set of values

of Gaussian distribution are computed as decoder inputs. These

values are then quantizes to eight or 16 equa]]y spaced levels.

For each quantization levol the logarithmic a posteriori probabil-

P(OIXk_,\ where is quantizaLlon value, isratioP(llXk. thek
computed. For each decoder inpat this ratio is computed and used
for decoding. In the program these values are called;

WQ(I,J), 1_ J _V

1_ I _ Block Length

For each message bit encoded there will be V code symbol_ trans-

mitted (convolutioaal encoding). The number of these set_ of V
elements (i.e., the message length) to be operated on in the simu-

lation is given by the block length, this is denoted by BL in _he

program. A particular set of code symbols is indexed by the sub-

script I. Code symbols for the Ith message bit are indexed by the
subscript J. The first of these (J = i), is the message bit

.... b=i-_eneo_e_ (syst_.._tie bit). The information rate tri6si_-itted

is given by the ratio, R = I/V where V is the number of code

symbols for each message bit.

D_ring each iteralton of the decoding scheme a modified value

for the logarithmic likelihood ratio given in the preceding para-

graph (WQ(I, J)) is computed. After all iterations are completed
a decision based on the message estimate at that time is made. To

compute the modified value while decoding a particular bit, we

perform the inverse mod-2 operation (i.e., A = B@C--_B = AOC)

which this bit entered into in the message encoding process. This

is done with respect to each of the node symbols influenced by
the particular message bit being decoded. Then the likelihood

opinion of the message bit is revised by adding (mod-2) to it the :

results of these inverse mod-2 operations.

To perform the process of the preceding paragraph, the simula-
tion program enters the computed WQ(I, i) values as the first

message estimate, ME(l, i). The length of the encoder register
i.e., the constraint length, is given by K in the program.

oo;'_j..... _-_'t,, ..... ..... _. v ,7,;_ -_.............. _"-_-" _C"............... "c_::_.Z_Z_t_ _Z'i.__Z./--_--- ' _.._._.i-:_.;:,:T-_.... _L':'-_r- _" _" l
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Hence, in the encoding-deeodlng process any message bit can be

affected by other bits a distance of K message bit posltions on

either side, and any bit can effect KV transmitted digits.

In the decoding process the likelihood estimate of the message

' bit being decoded WQ(I, J) is revised. This is done by taking

the sum of the In TANH[MF(I, J)] (this function corresponds to

the mod-2 addition) of all other code _ymbols into which the mes-

sage bit entered. In the simulation this sum is called MEP and

its terms are given by MEF(I, FIRST), the sign of MEF is called

MEFS. When this sum is attained for each connection vector these

sums (subtotals) _re added (mod-2) with WQ(I, J). In the simula-

tion this is actually done by first summing In TANH(X) of all

those WQ(I, J) which are of positive signs and then subtracting

from this MEP the MEF(I, FIRST) corresponding to the bit being

decoded. The inverse function is then obtained in the look-up

table. This process is gone through for each bit in the block
for each connection vector (mod-2 adder) of the encoder. The

number of times this process is repeated is limited by IL (itera-

tion limit). The connection vectors are given by C(l, J) in the

program. The number of blocks to process in a run is set by the

input parameter PASS.

Upon reazhing the bit string end for an iteration there will

be some inverse mod-2 operations not yet performed for the last

transmitted bit. To handle these effects the simulation uses two ,

options established by the input parameter $3. If $3 is set to

1 the end effects are ignored. If $3 is set to 2 a "wraparound"

approach is used bringing around bits from the beginning of the

bit string.

In the simulation a message of all zeros is assumed; hence

any negative values remaining in the ME at the end of the run are
counted as errors.

00000001-TSE03
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ALGORITHMVARIBLES:

' WQ(I, J) RECEIVEDQUANTIZEDBIT REGISiER
I = INPUT BIT POSITION
J = RATE DENOMINATOR

ME(I,FIRST)MESSAGEESTIMATE(DOUBLEBUFFERED)
I = COUNTEROF DECODINGPOSITION
J - RATE DENOMINATOR(WHICHCODE VECTOR)
L = ITERATIONCOUNTER
N = CONNECTIONSUBITERATIONWITHIN CONNECTIONVECTOR-

NOTE: NOT A BIT POSITIONINDICATOR

FIRST,SEC _ DOUBLE BUFFERPOINTER (REPLACESL FOR ACTUAL)
MEP : MESSAGEESTIMATEPRODUCT- USED ONLY FOR METHODOF

CALCULATIONOF INDIVIDUAL= TOTAL MINUS OTHERS.
MEF(I,FIRST)MESSAGEESTIMATEFUNCTION

INPUTPARAMETERS:

$1 = FOR INDEXINGRATE NUMERATOR,S1=1 FOR REGULARIN-
DEXING,$1=2 FOR ALTERNATINGRATE NUMERATOR

$2 = CHOICE OF BIT INPUT $2=1 FOR INFINITEBIT STRING,
$2=2 FOR STATIC FILL

$3 = WRAP AROUND ENCODERINPUT$3=1 IGNOREEND EFFECTS, ... ,.
$3=2 TO WRAP AROUND_ENb. ----- "

$4 = CHOICE OF LOOKUPTABLES 1 FOR 32, 2 FOR 64.
$5 = IMPROVEMENTBY DEGRADINGBY SUBTRACTIVEFACTOR-ON

ALL MES BY USING A=(MES-WQA(1))/SU_IATIONT(V)
S6 = COLLECTIONAND PRINTOUTOF ME STATISTICSIN FO_.I

OF LN N(I+)/N(I-)
P = PRINT OPTION INDEX,ALL LEVELS INCLUDETHOSE ABOVE

ITS OWN LEVEL. (SEELISTING)
BL = BLOCK LENGTH
K = CONSTRAINTLENGTH
V = RATE DENOMINATOR

C(V,M) = ACTUAL CONNECTIONAND BIT POSITION
T(V) = NUMBEROF MOD-TWOADDERS PER CONNECTIONVECTOR
IL = LIMIT TO NUMBER OF ITERATIONS
NI : NUMBEROF BITS TO INSERTWITH EACH ITERATION 'i

PASS = NO OF BLOCKSTO PROCESS
QUANT(1) = QUANTIZATIONTABLE BREAKPOINTS

START = WHICH ITERATIONNUMBERTO START TO CALCULATEIM-
PROVEMENT- SEE $5 OPTIONCONTROL

Fig. IV-5 New DecpdingAlgorithmSimulation

I
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BEGIN

I

INPUTDEFAULTVALUESFORI
INPUTPARAMETERSANDSET

, UP TABLES

I
IPRINTINPUTPARAMETERVALUESI

I
IINITIALIZEBLOCKCONSTANTSI

I
Is_,o__ _sl

I
Is_o_co.w_s_o.,A,LEI

I
IsETuPLOOKUPTABLEI

I

I INPUTBLOCKOF CHARACTERSI .,.._.

I

1
CONVERTFIRSTINITIALIZED
SET INTOFUNCTIONFORM

IITE_TIONINITIALIZATIONANDME TOTALIINITIALIZATIONTO WQ TERM

ICALCUlaTE MESSAGE ESTI_I_TE I 'PRODUCT(MEP)

IADDwQ TOMEPI _ ,

Fig.IV-5 (cont)

4
4
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, ICALCULATEMESSAGEESTIMATEOFf
IRUNNINGTOTAL I

ICHECKCONNECTIINSUB'ITERATIONI
CHECK RATE DENOMINATORI

_UB'ITERATIiN I

ICHECKCOUNTEROF _ECODINGPOSITIONI
I

ICOMPUTEDSUBTRACII_EFACTORI

IIMPROVEMENTCiLCULATION I

ISUBTRAcTIVEFAiTOREXECUTIONI

IADDITIONOF WQ TERMI
I

Ico_c,.o,o_._s,,,._,.csI
I

IADDITIONOF STATISTICSI

", ITO RUNNING_OUNTERS I
I

ICONVERTMESSAGEESTIMATEI

ITO FUNCTIONFORM I

IPRINTOUTOFINPUTCHARACTERS!

Fig. IV-5 (cont)
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NO

I

PRINTOUTOF FIRST ASSUMEDMSGE ESTI_,TEI

CP(7)>O NO

PRINTOUTOF NEW MESSAGEESTIMATEI

NO ,

IPRINTOUT OF ME STATISTICSl

_NO I
YESl- [PRINTOPTIONSI!

IPASS = PASS-11

YES Q _!i

I ,
_ OF_ooPI
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RANDOMNUMBERGENERATOR-FILLSWQ(I.J)]WITH RANDOMQUANTIZEDNUMBERS

ITANH LOOKUPMODULE

I
IMODULETO CHECK IF NN WITHIN
LIMITSAND CHANGETO NX

c_ '

Fig. IV-5 (,concl)
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V. HIGH-SPEED DECODER

A. DESIGN OBJECTIVES
#

The baste objective of this task was to produce a high-speed
demonstrator of the capabilities of the new decoding algorithm.

The hlgh-speed requirement is imposed to demonstrate the ca-
pability at any speed. That is, if the decoder wlll perform at
high speed It can be made to perform at lower speed with little
additional effort and ordinarily with less hardware expense.

Orlginally only certain sections of this decoder were to be
built. However, it was soon discovered that designing the auxll-

iary equipment necessary to demonstrate only the critical sections

of the decoder would be a greater task than designing an entire

encoder/decoder system on a small scale. Therefore, a complete

self-contained demonstrator was produced except for power supply

and an oscilloscope to display the operation.

i Primary objectives of maximum speed at minimum costs have
been attained. The demonstrator contatns its own message source

and noise source and clock. But the capability of supplying ex-

ternal data and noise and the clock are provided through front

panel connections.

Rather than attempt to set a bit rate requirement on the demon-

strafer, and attempt to achieve it with possible failure, the con-

figuration of the decoder was allowed to dictate the maximum bit
rate capability. This allows the family of logic and the design

technique to dictate the maximum bit rate operation.

B. GROUND RULES

The ground rules for this demonstration decoder were estab-
lished at the outset of the desisn stage and were carried out

throughout the design:

.2

• !

(_j'
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i) Produce a simplified implementation of the new decod-

ing algorithm that will demonstrate a larger deeorder's

capabilities at minimum hardware expense;

2) Demonstrate maximum bit rate capability for a large

decoder system with a small system;#

3) Maximum use of MSI components wherever possible and

use of LSI if the particular elements are available;

4) Worst-case design rules are to be used throughout;

5) 74H Series TTL is to be used in all cases where in-

dividual logic functions, latching, and gating, are

necessary;

6) Lower _peed logic will be ug_d wherever possible in

the man/machine interface;

7) Full synchronous sequential design is to be used
throughout the decoder;

,. 8) The decoder is not designed to gather performance

data -- this task is left to the general purpose com-
puters.

C. DESIGN

2,%,

The following is a functional description of each module as

it appears in Fig V-I thru V-25.

I. System B]ock Diagram

Figure V-I is a system block diagram showing the hardware lay-
out of the demonstration decoder. This figure can be used for

referencing the positions of the other 24 figures that follow,
and is helpful in going through the description of the function
of each of these modules.

2. M Re_ister and Encoder

The first module encountered in the demonstrator is called

the M register (for the message register) and encoder shown in

Fig. V-2. This is a hlgh-speed convolutlonal encoder, very slm-,

ilar to that found at the transmitting end of an operational er-

ror correction system. This unit consists of a 16-blt fllp-flop
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register. The most significant six bits, or the left-most in

this drawing, are the encoder register. The block shown directly

below th_s register is the actual mod-2 adder that produces the

transmitted symbol.

' Also included in this drawing is the hardware that creates

the quantized outputs from the encoder. These quantizers receive

their noise information from a set of four noise registers shown

in the next four drawings that simulate the space channel. Thus

the effective outputs of thls module are WQ terms.

The operation of this modul is as follows; There are two entry

ports for data into this module and two entry ports for noise.

The data may be entered through two pushbutton switches for l's

and 0's, and these pushbuttons must be depressed to produce the

16 message bits that are encoded. The other input port is termed

"external M," as shown at the top of Fig. V-2, and is the port by

which external data may be applied to this system. The normal mode

of operation for demonstration will be to use the pushbutton

switches to enter 16 bits of data. _en loading these 16 bits of

data, the operator must be careful because the first bit that is

loaded will not be the first systematic bit that is encoded. The

first bit loaded will actually be the most significant bit in the

register. The sixth bit that is loaded into th, register will be

the first bit that will be presented to the encoder for encoding

as the systematic bit. The first bit that is loaded will have an ._.
effect on this bit in that _t is under the encoder at the time of

encoding. This may seem confusing at first, but a little practice

in operating the system will eliminate the confusion that occurs.

The actual procedure for loading is to depress either a 1 or

a 0 button indicating the bit that is to be loaded. When this

is done, the value of the bit is impressed through the direct set

or clear inputs of the fllp-flop and a manual clock pulse is

generated, which shifts thls bit over to the next fllp-flop, thus

shifting the entire register one bit over. This bit is loaded

into the most significant blt position and then shifted, which

makes it resident in the least significant bit position. By the

time 16 bits are loaded, thl8 bit will again be in the most

significant bit position due to the shifting through the register.

The connections for the code are hardwired to the module

directly below the register, Part No. N8262A. This is a parity

generator or mod-2 adder, which creates the encoded word for the

nonsystematic (or check) vector. Noise is applied to these two

bits that are created by the encoder and the outputs are then

00000001-TSE11
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converted to WQ sign 1, WQ magnitude I, WQ sign 2, and WQ magnitude
2 and their complements, which are the outputs of this module.
This module is also furnished with a system clock so that it is

synchronous with the entire system.

' There is a toggle switch on the front panel that allows selec-

tion of internal or external data. This switch also governs in-

ternal and external noise through the gates across the bottom

of the figure.

3. Noise Input Re_eqisters

Figures V-3 thru V_6 show tilefour nolse input registers.

These are vary similar to tileH register and are loaded in an

identical fashion to tileH reglstor. Noise is not loaded into
these r_gisters from an extern_l sourc_ during tileexternal mode

of operation because It is not necessary to store the nolsc that

is coming In from an external source as it is with the message.
Pushbuttons on the front panel are identical to those which load

the M register. There are four pairs of these for loading noise
and the same rules that the sixth blt loaded is the first bit en-

codeU hold for these four units. Once again, although this seems

rathcr diflicult at first, a small amount of practice using these

loading techniques will make the procedure very simple. The rea-
son this procedure was chosen is to avoid the necessity for five

sets of 16 switches to load these registers. '

4. WQRegisters

The Word Quantized (wq) registers shown in Fig. V-7 are actu-

ally the first module of the decoder, the previous boards being
the encoder portion of the system. This WQ register would normal-

ly receive its input WQ's and their complements from an analog-to-
digital (A/D) converter that would have quantized the received

signal. In this case the A/D converter is simulated by the pre-
vious modules where the noise is added mod-2 to the message. This

is done because the demonstrator never creates an analog signal

as such. These WQ's are loaded into the first flip-flops on the

right, simultaneously, and are picked up by the rest of the system

through modules that will be explained later. Notice that WQSI

and WQMI are held for five bits or five clock times and that the

WQ2's are not. This is because these bits are not used until

later when they are quantlzed by the circuit on the left hand sec-
tion of the drawing, the logic and flip-flops shown there, create

the transformed word quantized or as shown TWQO through TWQ3 and

TWQS. These bits are then used in the arithmetic units as de-
crlbed later.

O0000001-TSE12



MCR-70-419 V-5
,?

#

Once again, this module looks exactly as it would in a func-

tioning decoding system, although it is small compared to what it ii__

would be in a more highly refined system.

5. MEF Reglsters _ .
I

The modules shown in Fig. V-8 thru V-II are the MEF registers

signifying the Message Estimate Function registers. These regis-

ters are initially preset to all l's at the outset of a decoding

cycle to neutralize the data left in them. There is a preset

pushbutton cn the front panel. These registers furnish data about

the previous bits of the system. It is difficult to explain this
register at this time, because nothing has occurred that lo_ds

this register except the preset. On subsequent iterations these

four registers would have been reloaded from the signal RHEF or

Resultant Message Estimate Function from a previous iteration
cycle and would now be impressing data about the previous itera-
tion on the present iteration of data.

,. 6. SubtotalAddersandMEPF .-
X

_: Figure V-12 shows the subtotal registers and adders. This i!

_! module receives its data from WQ and MEF creating and storing a
subtotal in an add cycle. In other words WQ2 is added to MEFO !

_! and MEF2 is added to MEF5 and their sums are stored. The sig_s
_i from WQ2 and MEF0 are mod-2 added and stored; also the signs

_:i MEF2 and MEF5 are mod-2 added and stored, cre_ting a subtotal that

_ is presented to the module of Fig. V-13 where the Message Estimate

_ Product Function _EPF) is generated as a sum of subtotal 1
_: and subtotal 2. These are then stored in the flip-flops. Sub-

_: tota_ 1 slgn and subtotal 2 sign are mod-2 added and stored. Each

_ of these steps now have been proceeding at one bit time per opera-
tion./

_: 7. MESF

The data from the MEPF now are distributed to three subtractor

. units that create the Message Estimate Subtotal Function (MESF).

These three subtractors are shown in Fig. V-14, V-15, and V-16.
Their function is to take the MEPF and subtract from it the MEF

of the bit of interest, also performing mod-2 subtraction on the

sign bits and storing these.

8. MESO_,.MES2_ andMES5

Figures V-17, V-18, and V-19 show the Message Estimate Sub-
total modules that are entitled MESO, MES2, and MESS.

Y

• ': . _-_, ,., ,,.. ,:, ,6" '_ .... ?_: ._ " _./_ ._ "C_)' _ ..... g _"_ ,p_. ......... _ UoEC ,:. _ L, :' _,,,.. :._ ....... . " o . ,,-.'.:._, ,, o
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These three modules receive data from the MESF modules and l
transform these data by the function defined in equation [IV-9]

of Chapter IV. The outputs of thls function transform are then

latched In fllp-flops as shown and held for use by the next set
, of modulee.

The function performed by thls module is shown in Table V-I

and should completely explain the operation of this module.

Table V-I Module Function

Input Output
x f(x) ,;

0 0000 1010 i

I 0001 01. I0
2 0010 0100 .-.

3 0011 0011 '_

i 4 0100 0010 .i

i_, 5 OlOi ooo1 _
,!:, 6 01 I0 0001

i; 7 0 1 1 1 0 0 0 0 ,!
!! 8 1000 0000

9 1001 0000

ili'! 10 10 10 0000 i._
-_ 11 101 1 0000

_; 12 I IOO ocoo
ii 13 1 1 o 1 o o o o i_
!.

14 1110 0000

15 I 1 i 1 0000

9. ArithmeticUnits
,__

The arithmetic units are shown in Flg. V-20, V-21, and V-22. i il
They are simply explained as full adder-subtractor modules, re-

celvlng their inputs in the case of Flg. V-20, from MESO and TWQ. ',.i
Inputs to Flg. V-21 are from MES2 and MERTI, and inputs to Flg. _q
V-22 are MES5 and MEET4. :_'

" '_°° ' _ ° ° ° _ _' ....... 00000002-TSA03
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Depending on the sign and magnitude of the inputs to these
modules, they produce either an addition or subtraction, combining
the two input numbers and produce the resultant output.

Inputs to these modules are presented in 2's complement form,

' and outputs are generated in 2is complement form.

10. HERT

The Message Estimate Running Total (MERT) module of Fig. V-23

is the ho_dlng register for the arlthme_i_ manipulations. It is

baslcally a sequential accumulator that spaces the mesF,age estimate
running totals for use by the adders described in the previous
sectlon.

The sums must be held for specific bit periods to synchronize

_ them _rlth the other operations of the decoder. ':

11. RMEF.

,:, The Resultant Message Estimate Function (RMEF) module shown

In Fig. V-24 is the final unit of the decoder and consists of the i

output function generator, the output unit, and some housekeepi_
hardware that reorients the data for use by subsequent iteration +

"+ cycles • __i

'_ii The Inputs to this module are MERT5, coming from the last _

arithmetic unit of the decoder. This module first takes the 2's
::_ complement resultant of the MERT5 and puts this in sign magnitude

form. This sign magnitude number is then latched and at the next

+:+_ bit time is presented to the output function generator which pro-
_"+ duces the RMEF. The resultant Message Estimate (ME) is also out-

put by this module.

The data RMEF are presented back to the MEF registers when the

switch on the front panel, called ITERATE, is depressed. These

data are presented+for one period of data or 16 bits, then data

into the MEF are stopped, and the decoder goes back into the dis-
play mode, The ME output is continuously presented to the front
panel for display on the oscilloscope.

12. Ttmtng and Contro_ Logtc

Figure V-25 shows the timing and control lo$ic for the entire
demonstrator. It consists of an external clock-entry port with

associated electronics to square up this input signal and format
it as a clock for the system.
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E

Also included in this module is the internal c_ystal oscillator
module with its squaring electronics and the countdown register

to produce the system clock.

The ITERATE switch and the RUN/STOP switch that control the

, operation of the decoder along wlth the 16-bit synchronizing
counter are included. The primary output of this module is CLOCK',

which is distributed to each of the other modules of the system,

and the SYNC output for synchronizing the dlsplay on the oscillo-

scope.

This concludes th_ detailed description of each of the modules

included in the demonstration decoder. Photographs of the finished

demonstrator are shown in Figs. V-26, V-27 and V-28.

D. OPERATIONGPROCEDURE

i A step-by-step operating procedure that must be followed to !
, properly operate the demonstration decoder is presented in this
_: section. Many of the steps given here must be followed in order_ i

il and the specifications given must be closely adhered to because i

of the critical nature of some of the components used in this sys-
_ tam. Because this is a demonstration breadboard, many of the _'

safeguards for overvoltage and ovarcurrant have not been included.

The procedure is as follows: |

i_ i) Secure a power supply of nominal 5 v output, capacity i_

i0 maps. This voltage must be well regulated and !

should not exceed 5% v nor be lass than _ v. This _,
is a critical parameter, and the demonstrator should i_
be operated as nearly at 5 v as possible. The power

supG_y voltage should be checked before connection ,_
is made to the front panel Jacks for power. This will

guarantee that the logic of the system will not be

damaged, as there is no overvoltaga protection and
there is no power switch included in the d_aonstrator

' itself ;

2) An oscilloscope of the Tectronix 585 type or Hewlett-
Packard 180 should be used with this demonstrator.

These oscilloscopes provide sufficient bandwidth to

demonstrate the capabilities of this unit. The trigger

v

C)0000002-TSA05
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Input to the oscilloscope should be connected to the i
sync output on the front panel of the demonstrator.
The leading edge of the synchronization pulse should
be set to the left side of the grattcule of the oscil-
loscope screen. The total cycle width of the synchro- 4

' nlzatlon pulse should be set to 8 cm. Thls allows on_ !
to determine which bit of information is being looked
at in that each of the 16 bits include 1/2 cm of t

gratlcule;

3) After the power supply has been connected and the i

synchronizing output has been connected to the oscil-

loscope the RUN/STOP switch should be set to the STOP

positiont and the PRESET button should be depressed
once. In the STOP position, the front panel data and

noise pushbuttons are enabled. Data can now be i_serted

into the message register and noise into the nois,_

registers;

' 4) Data and noise are entered through the i0 pushbuttons

i on the front panel. Each time a button is depressed 4?

_ a i or 0 is loaded into the next most significaut blt ._

_ of the register, depending on which pushbutton is de-

_I pressed. Care must be exercised in loading da_a and
_ noise because the sixth bit loaded into the registers

i becomes the first systematic bit of the encoder cycle.
_! After loading the message and noise the RUN/STOP
_I switch should be put to the gUN position. Data are now

_I_, being transmitted and received;
_' 5) Operation is ovserved by using a dual trace plug-in in

_ the oscilloscope set to the_alternate mode of opera-

_ tion. The Inputs should be M and ME from _he front
:i panel of the decoder. These will show the original

message (M) and what the decider has estimated is

i, the message (ME);

6) The ITERATE pushbutton may now be depressed and the
decoder will make one iteration and give a better

estimate of what the orlglnal message was. Each time

the ITERATE pushbutton is depressed the decoder makes
one iteration and returns to the display mode to con-

tinuously display the result;

7) The message received by the decoder may be observed as
the 4 WQ outputs and the encoded message may be ob-
served as M for the systematic bit and W2 for the non-
systematic blt;
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8) External messages and noise may be presented to this
demonstrator through the external connections. These

signals should be 0 to 5 v TTL compatible NRZ signals

synchronous with a sinusoldal clock slgnal supplied

, through the external clock connector, The outputs wlll
be the same as for the internal data.

i
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VI. CONVOLUTIONALCODE PERFORMANCE

This chapter contains tables o£ convolutlonal codes sultable

for use with the Vlterbl decoding algorithm. Good codes are listed

' for constraint lengths K from 4 to 9 and rate denominators V from

2 to 4. Performance figures are also given, althouEh caution must

be used, as explained latsr in this report, in using these figures
at low signal-to-noise ratio and large constraint length.

When investigation of Viterbi decoding was started, it was

found that selection and evaluation of codes presented some dif- i

flcultles that are alleviated by these tables. Two criteria must

be met for good codes -- they mu_t not be "catastrophic" aud they
should have small numbers of code words of small weight. A pencil
and paper testing of codes that meat these criteria is not diffl-

cult for constraint length K B 4 or 5, and V - 2 or 3, but it

rapldly becomes tedious a_d uneconomic for larger K add V because
of the astronomical number of codes that must be tried and the
likelihood of human error. -

Performance of the codes can be determined by simulating the

decoding algorithm on a general purpose computer, but this Monte '_

Carlo method requires a large'amount of computer time to get sta-

tistloally valid data at high slgnal-to-noise ratio or large.K.

A useful approximation to error frequency, the union bound, is _ ..,.

valid at high slgnal-to-nolse and is easily computed from a llst L
of code word weights, i

Our computer program calculates the-unlon bound at energy
i,

slgnal-to-nolse ratio per bit _o = 4 dB and 6 dB for both bit

and burst error frequencies, and lists the i0 best codes for each ._

of the four criteria (4 dB and 6 dB, bits and bursts) for V = 2 i

to 4 and K - 4 to 9. _!
4

I
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A. CONVOLUTIONALCODES

Convolutlonal codes are easily generated wJth an encoder as

shown in Fig. Vl_l. A stream of message bits is shifted into the

' K-stage sblft register one at a time. A number V of mod-2 adders

(parity check circuits) arc connected to v_rlous stages of the

shift register and are each sampled by a commutator every time a
new blt is shifted in. The coded output thus consists of V times

as many channel symbols as message bits, and the Pate of the code

is said to be I/V. A finite sequence of message bits is called
a code word.

The Hamming distance (or simply "distance") between any two

coda words is the number of places in which they differ. Thus_

100111 and 110101 differ in two places, the 2nd and 5th, and '_
therefore have a distance of 2. If the distance between two code

words A and B is small, it is easy for channel noise to make the _

receiver think that B was t_ansmltted when in fact it was A, and

vlae versa. In other words, A plus the noise can easily look
more llke B than llke A.

Thus a code with a large minimum distance between code words _

is desirable. It is a fundamental property of parity check codes,
including convolutional codes, that a list of the Hamming distances i

between a particular code word A and all other words in the code _ /_
are independent of A. This simplifies the problem of finding the _:
minimum distance since we can examine the distances from the all-

zero code word 000...00. The Hamming distance from thls word to i_

a second word is simply the number of ones in the second word,

and thls number i_ called the Hamming weight (or simply the
'_elght") of the word. It is much easier to test a given code _
for the mlnlmumwelght than for minimum distance.

t
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Heller* gives a method for determining an upper bound on the
minimum weight of a convolutional code for any constraint length

K and rate I/V. This bound is based on the total weight of all

nonzero code words of a given length and is equal to half the

length times the number of nonzero words. The minimum weight for
' the nonzero words cannot be more than the average weight for

these words, which is therefore an upper bound on the minimum

weight. This bound is valid for any message length L and is given

by

. (K+ L - I)2L-IV [VI-l]
2L - 1

The hound is computed for each L starting with 1 until a minimum

is found, and this minimum is then an upper bound on the minimum

weight. These bounds are mostly noninteger fractions and can

therefore be reduced to the integer parts.

A further reduction in the bound is achieved for some cases ,, °

when the method _ust described yields an odd number. The reason-
ing follows from the fact tha_ if a code has any words of odd

weight, exactly half of the words have odd weight. Consider for

example V = 3, K = 8 for which the mlnlmumvalue for Eq [VI-I] is

found to be 17 1/7 for L = 3. This is the average weight for the

seven nonzero code words corresponding to messages of length /_
L = 3. To achieve this value with a mlnimumwelght of 17 would

require six words of weight 17 and one of weight 18, obviously

contradicting the requirement that the number of words of odd

weight must be 0 or _. The maximum mlnlmumwelght is therefore

not greater than 16. A similar result is found for V = 2, K = 6. !

With this refinement, our computer found good codes that _

reached the bound in all cases except V = 2, K = 5 and V - 2,

K = 8. In the first case the only code wlthmlnimumweight 8 is i_

catastrophic. For V - 2, K = 8, good codes of mlnimumweiEht 11 4
were found when the message length L was limited to 6, but all
of these were el_nated when L was extended to i0.

*J. A. Heller: "Short Constraint Length Convolutlonal Codes."

JPL Space Programs Summary, Vol III, p 37-54.

ii
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Table VI-1 shows the mtntmum wetghts that were achieved.

Table VI-I MinimumWeightsfor .,
GoodCodes

' ' 4 5 6 7 8 9 !
' i

2 6 7 8 10 10 12

3 10 12 13 15 16 *

4 12 16 18 20 22 *

• These cases were not searched.

B. CATASTROPHICCODES

Certain convolutlonal codes are called "catastrophic" because
they produce massive blocks of errors. To understand how thls can

happen, consider the following example.

For K = 5 and V = 2, mlnimumw_:Ight 8 is obtained only with
the code generated by the shift register connections i0111, IIi01

" (and symmetrical transformations of thls code). Onfortunately,
it tnrns out that thls code is not a good one. Because there are _

f

: an even number of connections to each mod-2 adder, the coded bit
_ stream is the same for the complement of the message as it is for

the message itself. For instance, there Is no way to distinguish ._

between the messages...000000.., and ...iiiii.... Simulation on i

a general-purpose computer confirms thls prediction. When the i
message is all zeros, the decoder puts out long strings of zeros

and ones. The simulated noise flips the decoder from one state ito the other.

More general considerations permit a quick test to eliminate

degenerate codes llke the one Just described. It is convenient

to treat the connection vectors as "polynom/nals with coefficients

from the field of two elements." These "elements" are, of course,

0 and 1 and they obey the rules 0 + 0 = O; 0 + 1 = 1; 1 + 1 = 0;
0 • 0 - 0; 0 • 1 - 0; 1 • 1 = 1. In polynomlnal form, the ¢on-
nectionvectors for the code discussed above are:

x4+ x 2 + x + 1, and

x_ + x 3 + x2 + i.



I

i"
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These polyncmlnals can be factored as:

(x4 + x2 + x + i) _ (x + l)(x 3 + x2 + I), • [VI-2]

(x4 t�3+x 2+ I) = (x+ i) (x3 +x+ i). [w-3)

The fact that both polynomlnals have x + 1 as a factor indi-

cates that the code is degenerate and is equivalent to a K = 4

code. This can be verified by putting messages through the two

encoders in Fig. Vl-2. The _o-stage shift register that precedes

the K = 4 encoder performs a transformation in the message space ,,,
without affecting the performance of the code.

},

Input-_-{+ _
o Output _ _ (__--_.Output

(a) K = 5 Encoder (b) K = 4 Equivalent i ..

Fig.VI-2 A DegenerateK = 5 Encoderand its K = 4 Equivalent

In general, a code is catastrophic if and only if all of its i
connection polynomlnals have a common factor. An important func-

tlon of the search program is to make this test. ;_ _/'_'

C. THE UNIONBOUND '+

?

two or more codes for a given V and K have the same mini-
When

mum welght, a sharper method of code selection is needed. The

simplest improvement is to choose the code with the smallest num-

ber of words of mlnlmumwelght, and if there is a tle, words of
the next higher weight can be counted until a single "best" code
is found.

A better way is to make a quantitative choice by using the

union bound. This is an upper bound on error probability for
maximum likelihood decoding. The probability of each possible
error pattern is computed as though the decoder were forced to

choose between the correct message and a message with that partic-
ular error pattern. All the individual probabilities are then

added to _ive the union bound. At low slgnal-to-nolse ratio the

error patterns overlap and the true probability is slgnLflcantly
below the bound, but when the error probabillty is low, it is a
good approximation.

"' -_;+," + + ..... , + ....... _+ ,y ,+ + ,,_. +:, +_+_;"..... _+ , ._ • ++.... _,,L,_+ ..' • "_i _ '...... ° " _ ++ +._+,,°....... ++:,.,+,•:+';' .. ° +',,. ++_ +_,_++.,., ,, ° _i_+° + .... _+°
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_j

For a given error pattern m starting on a given message bit,

the probability is e

ao

' Pm exp (-x2/2) dx. [VI-4]
¥

m

Y is determined by the signal-to-noise ratio per bit _Po' the ;

rate denominator V, and the weight W of the code word correspond-
ing to the error pattern: m

y2. 2WmEb/VNo.
[vz-s]In

The bound on the bit error frequency is found by multiplying

each Pm by the number N of bit errors in the pattern and summing.m

P(blt)< ]E:Nmem" [VZ-6] -,.

_ The bound on burst error frequency is also computed. For this ,
_. calculation we have defined a burst as a pattern of errors that ..

_L;. spans no more than i0 bits, The 10-blt limit was chosen to limit i
!: the amount of machine computatlon that was needed, The limit for

_ bursts is similar to Eq [Vl-6] but without the multipliers N : _"'

_._. P(burst) < [Vl-7] iPro"

-/ The number of codes to be examined increases exponentially i_
'_' w_th both K and V. For a given K there are K - 2 connections to (

be chosen for each connection vector if it is assumed that the

first and last connections are always used. Thus there are

2(K-2)V/V]'' possible codes that must be tried if permutations of
connection vectors are not searched separately. At V = 3 and
K = 8, for instance, about 25,000 codes must be processed.

To keep computer time reasonable, the length of the message
was limited to 10 bits and code words of weight greater than 2V
in excess of the minimum weight were disregarded. For this reason
the computed union bound is slightly lower than the correct value.

An estimate of the size of the defect may be made by computing
the bound using only the shorter messages and lower weights. For
instance for the V = 3 K - 8 code 143 ,185 ,237 there are two words

_J
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of weight 16 and eight of weight 18 that were found by the com-

puter in its search. The two at 16 are found when the message

length is 2 bits or under and seven of the eight at 18 are found

with messages of 5 bits or fewer. It is unlikely that messages
longer than 10 bits will yield any more code words of these

' weights. At 4 dB the t_o words at ]6 contribute 48_ of the com-

puted burst-error bound and the eight words at 18 contribute an

addltlonal 35_, leaving 17_ for words at a weight of 22 (this

code has no words of odd weight). If contributions at the higher
weights continue to decrease by a factor of 2 for each increase

in weight, the computed bound is about 20_ low. This represents
an error of less the 0.1 dB in slgnal-to-noise ratio. At 6 dB

the error is vary much less. The relative performance of the
codes is probably indicated quite closely by the bounds as com-
puted.

Figure Vl-3 compares simulation results with the union bound.

The discontinuity between the t_o curves is largely explained by
the loss due to quantlzlng to 8 levels for the simulation.

D. DESCRIPTIONOF PROGRAM ._

i The strategy of the program is to elimlnate bad codes early ,,_
. with a minimum of work. The simplest test is to count the number

of shift register connections and compare it to the putative maxl-

mumminlmumwelght. (The number of connections is equal to the
weight of the code word corresponding to the message ...0001000...)

Next, a check is made to see whether the reverse of the code, which '_
has the same weight structure, was examined earlier.

Thirdly, the code is checked to determine that its weight is
equal to or greater than themaxlmumminimumweight for message
vectors out to 111111. Next, by a process of polynomlal division,
it is found that there are no common factors in the code connec-

tion vectors, and then the welghts are checked out to message
vectors of 1111111111. _"&
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Fig. VI-3 Performanceof V = 2, K - 5 Code10011, 11101
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The first assembler program, which searches out the good codes

and writes them on tape, is £ollowed by a Fortran program that t
recognizes the first word in the first record as the rate denomina-

tor to be worked with. The Fortran program then computes the ap-
proximation

l

_ -- exp(-Y2/2) [VI-8]
¥

where

zb/v
and sets up a table of all solutions for the specified V and range

of weight values. These are not only stored for the program but

are written on the output tape as floating point nu_Lers. The

Fortran program transfers the input rec.rds it does not process
intact to the output tape.

The program then processes all good code records, multiplying ._

the weights in the source record by the proper entry in the error
integral solutions table, and solving for the union bound for all

LI values of _/N ° from 4.0 dB thru 6.0 dB in increments of 0.2 dB

(21 values) for both bit and burst errors. The program outputs
, four records for each input record:

i) Source data and all error integral data for bit errors;

i 2) All 21 values of the union bound for bit errors, for-
matted for printer; ,ii

3) Source data and all error integral solutions for "
burst errors; !

4) All 21 values of the union bound for burst errors.

The output tape now has not only source data, but Fortran-

processed, expanded data for good codes.

o
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The flnal program module in the series is an assembler program

capable of giving a printer output, sorting, culling, and consoll-

.. dating all data and giving up to two Cape outputs. As used, only
one Cape was written and it is essentially the same as the Fortran

processed tape except thaC the Fortran program works an entire

rate denomlnaCor value as a file while the final program puts each i4
K into a file for easier and faster access to smaller areas of i
data.

E. RESULTS

The top block of information on Table VI-2 of the following

printouts represent the consolidated results for each K of each

V processed. In order on the page are the best (up to i0) codes

surveyed for each V and K, with the connection vectors (in deal- i
mal notation) and the value of the union bound at 4 dB on the ,_

left; to the right are the same data at the 6 dB point, for bit i
error computations. An identical selection and presentation for

burst error data is given in the canter block of each page of
Table VX-2. 4

The lower block on each page of Table Vl-2 shows the union !

bound approximations for not only the best, but also the worst _I ....._.
codes

that met the selection criteria. The first two pair are

i

the best and worst codes for bit error8 at 4 dB and the two re-

malnlng pairs are for burst errors. In each case the union bound
is tabulated from 4 to 6 dB in increments of 0.2 dB.

Because of the large number of good codes tha_ were found _
with certain combinations of V cud Kj the search was stopped be-

lure all possibilities were exhausted. The cases that are incom- :_
plata are for V = 3, K - 8, which was stopped after 820 codes

were found, and V = 4, K - 8, which was stopped after 270. Thus
the "best" and '_orst*' codas are the best and worst of those triad.

Table V1-3 is an incomplete llst of the good codes. Each

code appears on two lines. The first llne shows the aggregate

weights of all the code words having mlnlmumwelght, minimum

weight plus i, and mlnimumweight plus 2. Following this are the
values of the union bound for bit errors at 4 and 6 dB. The

second line for each code shows the number of words at each of

the three weights and the union bound for burst errors, l

00000002-TSD10
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